Sea Surface Temperature Gradients Estimation

Sea Surface Temperature Gradients Estimation

Using top-of-Atmosphere Observations from the ESA Earth Explorer 10 Harmony Mission: Preliminary Studies. A GHRSST talk with Daniele Ciani

By GHRSST Project Office

Date and time

Thu, 3 Aug 2023 09:30 - 10:15 PDT

Location

Online

About this event

Join us for this exciting talk!

Abstract

The Harmony satellite mission was recently approved as the next European Space Agency (ESA) Earth Explorer 10. The mission science objectives cover several applications related to solid earth, the cryosphere, upper-ocean dynamics and air–sea interactions. The mission consists of a constellation of two satellites, flying with the Copernicus Sentinel 1 (C or D) spacecraft, each hosting a C-band receive-only radar and a thermal infrared (TIR) payload. From an ocean dynamics/air–sea interaction perspective, the mission will provide the unique opportunity to observe simultaneously the signature of submesoscale upper-ocean processes via synthetic aperture radar and TIR imagery. The TIR imager is based on microbolometer technology and its acquisitions will rely on four channels: three narrow-band channels yielding observations at a ≃1 km spatial sampling distance (SSD) and a panchromatic (PAN, 8–12 μm) channel characterized by a ≃300 m SSD. Our study investigates the potential of Harmony in retrieving spatial features related to sea surface temperature (SST) gradients from the high-resolution PAN channel, relying on top-of-atmosphere (TOA) observations. Compared to a standard SST gradient retrieval, our approach does not require atmospheric correction, thus avoiding uncertainties due to inter-channel co-registration and radiometric consistency, with the possibility of exploiting the higher resolution of the PAN channel. The investigations were carried out simulating the future Harmony TOA radiances (TARs), as well as relying on existing state-of-the-art level 1 satellite products. Our approach enables the correct description of SST features at the sea surface avoiding the generation of spurious features due to atmospheric correction and/or instrumental issues. In addition, analyses based on existing satellite products suggest that the clear-sky TOA observations, in a typical mid-latitude scene, allow the reconstruction of up to 85% of the gradient magnitudes found at the sea-surface level. The methodology is less efficient in tropical areas, suffering from smoothing effects due to the high concentrations of water vapor.

Our speaker

Dr. Ciani received the M.Sc. in Physics at the University of Rome “Sapienza” and a Ph.D. in Physical Oceanography from Université de Bretagne Occidentale (UBO, Brest, FR). Dr. Ciani research interests include satellite Sea Surface Temperature (SST) remote sensing, SST studies for ocean dynamics applications, SST diurnal warming and the development of future satellite missions for the SST retrieval.

All speakers and topics of the upcoming ghrSST talks:

https://www.ghrsst.org/outreach/ghrsst-talks/

Would you like to receive our news?

Please follow us on Twitter or sign up for our newletter.

Would you like to be the next speaker?

Please get in touch with the GHRSST Project office

Organised by

Sales Ended